MMANAで広帯域八木アンテナを設計する

今年、100km超のD-STARレピーターアクセス実験をしようと430MHzの八木アンテナを安上がりに作るために設計して自作しました。

https://jh8jnf.wordpress.com/2015/04/25/mmanaで広帯域最適化の3(決定)/

某所でMMANAでの設計の仕方の質問を受けました。

メモ・備忘録代わりにやり方を記します。
まざ、基本的なMMANAの使い方(八木アンテナやクワッドを自分で定義して、共振周波数とかゲイン最適化ができる程度)はマスターされているという前提で話を進めます。

今回私が行き着いた八木アンテナですが、W1JRタイプと言うらしいのですが、50オーム直接給電の上、バンド幅が広く取れるタイプとなりました。

長所

  1. 430でも(少なくとも)1mm程度の加工精度があればそれなりの結果が出る(広帯域のおかげ)
  2. 組み上げれば無調整で完成
  3. 例えば430MHz帯の435MHz中心でバンド内で設計SWRが1.1以下にできる(1.5以下の帯域が数十MHzになる)ので、SSBでもFMやD-Starレピーターでも性能を落とすことなく利用可能
  4. ラジエーターはフォールデッドではないので加工が楽。

短所

  1. ドリブンエレメント、リフレクター、第1・第2ディレクターの加工精度はある程度気をつける必要がある(といっても前記の通り430で、普通の物差しで測れる1mm程度の精度が確保できればOK)
  2. 広帯域とインピーダンスが最優先のため、ゲインやFB比は同一エレメント数・ブーム長のものと比べてある程度の差は出る(430のブーム長2m程度の2エレでゲインで最良設計のものより0.5〜1dB程度、FB比で5〜10dB程度は差が出る)
  3. 直接給電のためラジエーターは中央分割となる。波長が短いUHFでは、同軸・バランをつけた上で長さに関する予備実験が必要。(ショートバーとかキャパシタンスが無いので)これは他の設計方法でも同じかもしれません。
  4. ラジエーターはブームに直接接続できない

構造的な特徴として、ラジエーターと第1ディレクターの間隔がとても狭くなります。(後でMMANAでの構造例を掲載します)
3エレタイプもあるらしいのですが、4エレ以上の方が最適化による設計は楽そうです。
MMANA(-gal)での設計方法

  1. まず、中心周波数を決定します。430なら435MHzで良いと思います。
  2. ドリブンエレメントを水平なり垂直ダイポールとして定義します。パイプ径を指定、計算タブで自由空間を選択、材質でアルミパイプか銅パイプを指定(半田付けの関係でドリブンエレメントは銅にするのが良さそうです、アルミでも圧着端子などで工夫すれば良いかも)。定義が終わったら、jX最小100%で1度最適化をかけます。
  3. 次に、リフレクター、ディレクター1, ディレクター2を追加します。目安として、リフレクターは1/4λ離し、第1ディレクターは1/8λ離します。第2ディレクターは第一から1/4λ程度離します。エレメント長はリフレクターでラジエーターの1.2倍程度、第1ディレクターで0.95倍程度、第2ディレクターで0.9倍程度をとりあえずの初期値としましょう。
  4. 一旦ここで保存してください。
  5. 最適化をかける準備をします。マッチングをとるインピーダンスを50Ω、最適化のゴールは、まずSWRとjXを50%50%にしてくたさい。次に調整する対象を追加しますが、この時、最初に調整されるエレメントはラジエーターとしてください。以降、リフレクター間隔、リフレクター長、第1ディレクター間隔、第1ディレクター長、第2ディレクター間隔、第2ディレクター長と追加していきます。全エレメントで追加すると、リフレクターが最初に来ることがあり、その長さでインピーダンスを無りやりあわせるためにリフレクター長がとんでもない長さになることがあります。念のため、リフレクター間隔上限として1/6〜1/4λ程度を設定しておいてください。
  6. 次に、バンド設定を開いてください。周波数として先頭(優先する周波数)にバンド中央値かそのちょい下、バンド下端近く、バンド上端近くを設定してください。この方法で出来る最適化の結果は大抵、高い周波数方向にSWRのマッチ範囲が広い傾向があるような気もしますので、目的周波数はやや下寄りに全て設定すべきかもしれません。
  7. 一旦最適化を掛けてください。
  8. 結果が出たら周波数特性を確認してください。特性の偏りがあれば、6の目的周波数を修正するなり、低い方・高い方に周波数を追加してください。あんまり追加しすぎると最適化にかかる時間が長くなりますのでほどほどに。
  9. ここの周波数特性で満足いったら、今度はゴールとしてゲインとFB比を追加します。それぞれのスライダーでSWR/jXを最大、ゲインとFB比を真ん中位にセット(これでゴールはSWR33%, jX33%, gain 17%, FB17%位になります)
  10. 最適化を掛けます。
  11. 結果を確認して満足いかなければリフレクター、第1エレメントの位置と長さを手で少し適当に散らしてから再度最適化を掛けてください。場合によってはゲインかFB比の比率を下げてみてください。
  12. 満足する結果が出たら保存をお忘れなく。
  13. これ以降はディレクターを追加し、都度最適化を掛けていきます。8エレとか9エレになるまでは1本ずつ追加した方が良いです。その後は2本くらいずつ追加します。追加するエレメントの長さをさは1つ後ろのものの98%程度、間隔1つ後ろのエレメントの間隔と同程度に。
  14. 所望のブーム長などになったら、エレメント長さや位置の数値を丸めます。その後、最適化でステップを最小単位にあわせて最後の最適化をします。430ならmm単位が良いでしょう。

以下、注意事項やヒントです。

  • エレメントの長さの逆転が起きる場合…FB比を稼ぐためにそうなるのだと思いますが、最適化で前の方にあるエレメントが後ろのものよりも長くなることがあります。その場合、そのエレメントの長さを1つ前と同じにした上で、そのエレメントの最適化から長さの調整を外したり、1つ前のエレメントの長さに連動させたりしてください。
  • 調整の結果が上や下に偏る場合、エレメント数が少なければ引っ張りたい方向に周波数を追加してから最適化をかけると直ることがありますが、エレメントが増えるとイマイチ直らないことがあります。その場合、荒技ですが、アンテナ全体のサイズを拡大縮小して望む周波数特性に近づけてから最適化を掛けなおすと近づくことがあります。
  • 最適化をかけるときは自由空間で実行してください。リアルグランドにすると、地上高設定によっては高い周波数でメインローブがしっかり出ないことがあります。また、大地反射の計算の分、計算時間が余計にかかります。
  • 最適化の前と後で可能な限り保存するようにしてください。特にmmana-galの場合。不安定で泣くことが減ります。
  • シミュレーションが終わり、数値丸めなどが終わったら、各エレメントの長さや位置を最小単位で-1〜+1位振ってみてください。前述の430MHzなら1mm程度ところどころ足したり引いたりしてください。12エレなら8つのエレメントで数値を変えてみるなど。その状態で計算して特性があまり変わらないことを確認してください。大丈夫とは思いますが、逆にその程度で大きく変わる場合はそこがクリティカルです。工作に注意を払うか、再度設計を直すかとなりますね。
  • 完成したアンテナで周波数特性が上や下にずれている場合、まずは給電部を疑ってください。VUでエレメントの分離ができるなら、ラジエーターだけの特性をシミュレーションと比較して下さい。

アンテナハンドブックなどに乗っているゲイン追求タイプの同程度のものと比べると多少ゲインは落ちますが、無調整というのはメリットと思います。

たとえばこの方法で作っていくと20エレで4mブームにして1.5dB位差が出てしまうかもしれません。その長さのブームにするなら、2mブームでパラにして3dB上乗せするなど工夫が必要と思います。

シミュレーターで実験をお楽しみください。

広告

MMANAで広帯域最適化

目からウロコだったのでメモ
最適化の目標の詳細設定で、マルチバンド設定ができるが、そこで同一バンドの別周波数を設定してもいいらしい。なんと!

あとは八木とかの場合に、前後のエレメント長の間で変化させて欲しいんだけどなあ

つまり、上限下限を絶対値ではなく、相対値指定…できないよね?